
Tips
& Tricks

procedure CreateModal(FormClass: TFormClass);
begin
 with FormClass.Create(Application) do
 try
 ShowModal
 finally
 Free
 end
end;

➤ Listing 1

Showing Modal Forms
In August’s issue, Richard Smith submitted a routine to
help show modal forms by way of a function. This is a
great idea, but if simplicity is what you are after, we can
shorten the suggested routine to only take one parame-
ter (the second parameter serves little purpose any-
way) as shown in Listing 1. Incidentally, making the
form class reference a const parameter serves little
purpose since a class reference is implemented as a
pointer anyway.

Contributed by Brian Long.

TDBNavigator Button Click
I read Robert Palomo’s article Chasing Objectivity with
TDBNavigator in the June issue with great interest. I
had also been thinking of deriving a descendant of
TDBNavigator, in my case because I wanted the Insert
button to append a record rather than inserting one.

The author describes a possible approach: subclass
TDBNavigator, copy and paste the source of Click and
BtnCLick to the new class and tailor BtnClick to our
needs. He then notes that BtnClick references a private
variable FOnNavClick (the address of the OnClick event,
if any, of our navigator component) which we cannot
access, and then abandons this approach in favour of
another one.

However, further inspection of the VCL source tells
us that there is a published property OnClick whose
very purpose it is to provide access to the private
variable FOnNavClick. So we can declare a local variable
FOnNavClick of type ENavClick and use the property to
set its value within the method:

procedure TmbDBNavigator.BtnClick(
 Index: TNavigateBtn);
var FOnNavClick: ENavClick;
begin
 ...
 FOnNavOnClick := OnClick;
 if not csDesigning in ComponentState) and
 Assigned(FOnNavClick) then
 FOnNavClick(Self, Index);
end;

If you try this you will see that it will compile but still
doesn’t work! In fact, the smart linker hasn’t even in-
cluded our BtnClick in the executable. The reason is
that the only place from which BtnClick is called is from
our Click, and our Click is not called from anywhere!

The various references to Click in TDBNavigator still
point to the original Click, not to ours. So what we need
to do is replace these references with references to our
own Click.

This is not as difficult as it might seem. When we look
again at the VCL source we can see that the Click
method is set as the OnClick event routine of the vari-
ous navigator buttons. This is done by a method called
InitButtons which is called from the Constructor. So
what we can do is override the Constructor and replace
the OnClick events for the various navigator buttons
with a reference to our own Click routine, as shown in
Listing 2.

And now it works! Our BtnClick method now proc-
esses the navigator buttons and we can make it do all
sorts of clever things Borland never dreamt of! Admit-
tedly this approach is still not 100% ideal (as Robert
Palomo notes, we should have been able to override
the original BtnClick in the first place!) but is is a lot
better than duplicating all TDBNavigator’s VCL source
and creating our own navigator component from
scratch. The code for the new navigator is on this
month’s disk as file MBNAV.PAS.

Contributed by Maarten van den Broek from The
Netherlands

Laptop Battery Status
In most of my software I include the unit shown in
Listing 3.

The PowerMan function returns -1 if the laptop does
not have APM, otherwise it returns a value in the range
0 to 100 which indicates the percentage power remain-
ing in the battery. This is nice because you can make a
bar graph or a header showing battery condition auto-
matically when PowerMan detects a value 0 to 100. If no
APM is present, you can just set the Visible property
of the bargraph to False. It really impresses customers
to have the software tell them about their laptop’s
battery condition!

Contributed by mike pijl, mike_pijl@mindlink.bc.ca

TStringList Versus TStringCollection
Someone contacted me recently who had been working
extensively with TStringCollection from Borland
Pascal 7.0 to read strings from text files. They found
that trying to do the same with Delphi’s
TStringList.ReadFromFile took about 5 times as long
and even using TList didn’t improve the result. With a
350Kb file, the constant hard disk grinding indicated

58 The Delphi Magazine Issue 14

that a lot of swap file space was also being used, which
was not the case with TStringCollection. This happens
with both Delphi 1 and 2.

Well, it turns out that the internal implementation of
TStringList is a bit different between Delphi 1 and 2,
but they both suffer from the same problem: they grow
by a constant, hard coded, number of items when the
array of pointers/records needs to be expanded. In the
old (and in my opinion better implemented) TCollec-
tion objects you had to specify a delta when calling the
constructor. In the new Delphi TList and TStringList
classes this delta is kindly decided for you and you
cannot override it! The delta value in Delphi 1 and 2 is
16 for both TList and TStringList. So, whenever the
current capacity of the pointer/record array is less
than needed, the array is re-allocated to expand it by
16 items. The re-allocation usually means allocating a
new memory block, copying the old block into the new
one and de-allocating the old block (Delphi 2 can re-
allocate inline if conditions allow). If you try to fill a list
with 16,000 items, this re-allocation is therefore done

1,000 times! On average, a 32Kb block is copied each
time (16000 / 2 * SizeOf(Pointer)). This means that
32Mb of memory is being copied. In Delphi 2 this effect
is even worse for TStringLists because they are imple-
mented as arrays of records rather than arrays of
pointers. The record size is 8 bytes, so the correspond-
ing number would be 64Mb!

TStringList has Grow and SetCapacity methods, but
these are private and thus cannot be accessed. In
Delphi 1 the same applies to TList, while in Delphi 2
TList has a protected, virtual Grow method (that can be
overriden by descendants) and a public Capacity prop-
erty to set the capacity directly (and so avoid the
constant allocation, move, de-allocation cycles).

I would not recommend using TStringList for high
volume, time-sensitive work. If Borland had imple-
mented it a tiny bit more flexibly and consistently
(TList is fixed in Delphi 2, but not TStringList!) this
would not have been a problem. If you have the VCL
source you can use it as a starting point for your own
version of TStringList that fixes this problem.

Contributed by Hallvard Vassbotn, hallvard@falcon.no

Pointer Notation
Most users are aware of Delphi’s improved object
instance notation, without the hat (^) operator. What
Borland forgot to tell you is that in Delphi 2 this
notation is supported for all pointer types that point to
structured types (ie records, arrays etc). Check out
Listing 4.

Contributed by Hallvard Vassbotn, hallvard@falcon.no

{(C) 1996 Pijl Computer Services Ltd. Check laptop
power situation}
Unit Power;
Interface
Function PowerMan:Integer;

Implementation
Function PowerMan:Integer;
Var
 Fault,Batt,Life:Byte;
begin
 asm
 mov fault,00h
 mov ax,5300h
 mov bx,0000h
 int 15h
 jc @err
 mov ax,530ah
 mov bx,0001h
 int 15h
 mov batt,bl
 mov life,cl
 jc @err
 jmp @done
 @err: mov fault,AH
 @done: nop
 end;
 If (Fault=0) aAnd (Life in [0..100]) then
 PowerMan := Life
 else
 PowerMan := -1;
end;
end.

➤ Listing 3

constructor TmbDBNavigator.Create(AOwner: TComponent);
var
 I: TNavigateBtn;
begin
 inherited Create(AOwner);
 for I := Low(Buttons) to High(Buttons)
 do Buttons[I].OnClick := Click;
end;

procedure TmbDBNavigator.Click(Sender: TObject);
begin
 BtnClick (TNavButton (Sender).Index);
end;

➤ Listing 2

type
 PMyRecord = ^TMyRecord;
 TMyRecord = record
 Field : longint;
 end;
 PMyArray = ^TMyArray;
 TMyArray = array[0..100-1] of longint;
 PMySimpleType = ^TMySimpleType;
 TMySimpleType = Double;
var
 tMyRec : TMyRecord;
 pMyRec : PMyRecord;
 tMyArr : TMyArray;
 pMyArr : PMyArray;
 tMySim : TMySimpleType;
 pMySim : PMySimpleType;

procedure NoHat;
begin
 { Initialize pointer variables }
 pMyRec := @tMyRec;
 pMyArr := @tMyArr;
 pMySim := @tMySim;
 { Test normal assignment }
 pMyRec^.Field := 1234567;
 pMyArr^[0] := 1234567;
 pMySim^ := 3.14;
 { Test the no-hat assignment }
 pMyRec.Field := 1234567; { Compiles fine! }
 pMyArr[0] := 1234567; { Compiles fine! }
 { This last one does not compile and should not }
 pMySim := 3.14;
end;

➤ Listing 4

October 1996 The Delphi Magazine 59

Undocumented Delphi 2 Type Syntax
There are a lot of new language features in the Object
Pascal versions found in Delphi 1 and Delphi 2, but
there is one seemingly undocumented feature that
escaped me for some time. In Delphi 2, the following
constuct is legal:

type
 MyType = type longint;

This is used in the RTL/VCL in several places. For
instance, TDateTime is defined as

TDateTime = type Double;

as can be seen from the on-line help or in the source
(SYSUTILS.PAS). But what differentiates it from a nor-
mal TDateTime = Double; definition? One idea I had was
that this would be a way to hide the underlying type
and make the type checking of Object Pascal even
stronger. To test this I tried all variations of assign-
ments between variables with and without this extra
type keyword. Everything compiled fine with no type
errors – no luck there.

Then I tried sending the variables as var parameters
to a procedure and, what do you know, the compiler
gave me an Error (54): Types of actual and formal var
parameters must be identical. Without the extra type
keyword it compiles fine (see Listing 5).

So this gives us a way of defining our own types based
on existing types, but giving better type checking when
sending the type as var parameters. Good work,
Borland! (if only you could document it as well...).

Contributed by Hallvard Vassbotn, hallvard@falcon.no

Delphi 2 Optimisation
I’ve been looking at how well the Delphi 2 optimiser
generates code for typical case constructs. I built vari-
ous versions of a simple case statement and used Turbo
Debugger for Windows 32-bit (from TASM) to look at
the resulting code. I must say I am totally awed by the

designer and writer of the optimizer. It seems to have
a mind of its own and is much less mechanical in its
code generation than we are used to in Pascal products
from Borland. Well done! See the file OPTCASE.PAS on
this month’s disk for the test details.

So the moral of the tale is that the optimiser will most
probably generate very efficient code for your case
constructs. You don’t have to worry about sorting the
entries or small gaps in the constants, the optimiser
will still use very fast jump tables. If you are very
concered with speed and have large gaps in the
constants you could help the compiler by saying, for
example:

if a = 100 then
 a:= 1
else
case a of
 1: a:= 1;
 2: a:= 1;
 ...
 17: a:= 1;
 18: a:= 1; { All of this will become a jump table }
end;

Contributed by Hallvard Vassbotn, hallvard@falcon.no

Your Delphi 2 Executables
Are 500kb Larger Than You Think!
If you create a very small application in Delphi 2, then
examine it using a utility such as Norton’s System
Information, you will be in for a shock! On a simple
wallpaper-changing program brought to my attention
recently, Norton reported that this 30Kb EXE file was
actually 1.5Mb in size because of the various DLLs it
referenced.

It turns out that as well as the normal references to
USER32, KERNEL32 and so on, this tiny app pulled in
the 500Kb OLEAUT32.DLL! It appears that the SysUtils
unit uses some code to handle variants which refer-
ences this DLL. You can verify it yourself with this
sample program:

program HELLO;
uses Windows, SysUtils;
begin
 MessageBox(
 0, ’Hello world’, ’Hello world’, MB_OK);
end.

No calls whatever are made to SysUtils, but if you
remove if from the uses clause the 500Kb
OLEAUT32.DLL disappears from the project too!

In the initialization part of SysUtils, the exception
handling logic is set up. This sets a global variable
ExceptionClass to the daddy of all exception classes,
Exception. Referencing this class links in all the code for
Exception. Several methods in Exception call the Format
routine, which calls FmtStr which in turn calls the
FormatBuf routine, which is written in assembly. The
FormatBuf routine checks the types of the arguments

type
 TStrong = type Double;
 TWeak = Double;

procedure CheckWeak(var Strong: TWeak); begin end;
procedure CheckStrong(var Strong: TStrong); begin end;
procedure CheckDouble(var D: Double); begin end;

var
 D: Double;
 S: TStrong;
 W: TWeak;
begin
 CheckDouble(D); { compiles fine }
 CheckDouble(W); { compiles fine }
 CheckDouble(S); { <- compile error }
 CheckWeak(D); { compiles fine }
 CheckWeak(W); { compiles fine }
 CheckWeak(S); { <- compile error }
 CheckStrong(S); { compiles fine }
 CheckStrong(D); { <- compile error }
 CheckStrong(W); { <- compile error }
end.

➤ Listing 5

60 The Delphi Magazine Issue 14

sent in the array of const parameter. If the argument
is a Variant type, it calls FormatVarToStr.

The code for FormatVarToStr simply contains an
assignment from a Variant type to a longstring type.
The compiler translates this into a call to VarToLStr,
contained in the System unit. VarToLStr calls VarCast to
convert the variant to a string.

VarCast indirectly contains calls to OLE2 calls such
as VariantChangeTypeEx, VariantCopyInd, VariantClear,
SysStringLen, SysAllocStringLen. The API calls are im-
plemented in OLEAUT32.DLL which is imported in the
System unit.

Now, this is clearly not a very good thing, so how
could Borland fix it? Well, the simplest and least obtru-
sive way is to modify the behaviour of SYSTEM.PAS so
that it does not link in these routines implicitly, by
declaring them as external, but rather use procedure
variables and only assign them and thus load the DLL
when they are actually used for the first time, using the
standard LoadLibrary and GetProcAddress APIs.

Ideally we that have the RTL/VCL source code should
be able to do this ourselves, but I fear that it is not easy.
First you need TASM 4.0 or later. Then you have to
make the entire SYS directory by running the make file.
Note that SYSTEM.PAS is compiled with an undocu-
mented switch -y (this is probably because it contains
some hard coded stuff that the compiler knows about).
When (if) you have successfully re-compiled System and
the other RTL units that depend on it, you have to
re-compile the VCL. And as we all know not all of the
VCL source has been distributed...

I haven’t tried yet, but it might be that a modification
of System is possible without re-compilation of anything
else. The reason for this is that the OLEAUT32 routines
are defined in the implementation section of the unit and
any modifications we make there should not really
affect the linking to other units.

Contributed by Hallvard Vassbotn, hallvard@falcon.no

Are You There?
I found a problem in the function FileExists in Delphi
1.0. In one of my forms I have a field to enter a filename
and I want to check the existence of this file. But in a
test I entered (incorrectly) ’*.*’ for the file mask and
the FileExists function returned True! Maybe it’s not an
error but it could be a problem.

A better way to test the entry is using the FindFirst
function. Look for it in my example program on the disk
in CHKFILE.ZIP, the function I now use is:

Function ExistFile(FileName : String) : Boolean;
var
 SR : TSearchRec;
begin
 Result :=
 (FindFirst(FileName, faAnyFile, SR) = 0) and
 (SR.Name = FileName);
end;

Contributed by Peter Schrade, 101366,2433

TPageControl Accelerators
The standard Delphi 2 TPageControl doesn’t support
accelerator keys for its tabs, even when an accelerator
is specified in the tab’s caption. The unit in Listing 6
defines a TPageControl descendant that adds accelera-
tor support by responding to the CM_DIALOGCHAR
message. Note that the caption for each tab is actually
stored in the page (TTabSheet) and that we should also
check that the tab for a page is visible before checking
its accelerator key. The Change method must be
explicitly performed as it is not automatically called
when the ActivePage property is changed.

Contributed by Dean Thompson, Classic Software,
CompuServe 100033,1230

unit NewPC;
interface
uses
 Windows, Messages, SysUtils, Classes, Graphics,
 Controls, Forms, Dialogs, ComCtrls;
type
 TNewPageControl = class(TPageControl)
 private
 procedure CMDialogChar(
 var Message: TCMDialogChar);
 message CM_DIALOGCHAR;
 protected
 public
 published
 end;
procedure Register;

implementation

procedure Register;
begin
 RegisterComponents(’Samples’, [TNewPageControl]);
end;

procedure TNewPageControl.CMDialogChar(
 var Message: TCMDialogChar);
var I: Integer;
 S: String;
begin
 if Enabled then
 with Message do begin
 for I := 0 to PageCount - 1 do begin
 S := Pages[I].Caption;
 if IsAccel(CharCode, S) and
 Pages[I].TabVisible then begin
 { select the appropriate Tab and
 give it focus }
 Result := 1; { accelerator key is
 valid (don’t beep) }
 ActivePage := Pages[I];
 if ActivePage = Pages[I] then
 { successfully changed pages }
 Change;
 Exit;
 end;
 end;
 end;
 inherited;
end;

end.

➤ Listing 6

Thanks for all your Tips – keep them coming
in! If you have any hints that you think will
be of use to fellow Delphi developers, just

drop them in an email to the Editor on
70630.717@compuserve.com

62 The Delphi Magazine Issue 14

	Showing Modal Forms
	TDBNavigator Button Click
	Laptop Battery Status
	TStringList Versus TStringCollection
	Pointer Notation
	Undocumented Delphi 2 Type Syntax
	Delphi 2 Optimisation
	Your Delphi 2 Executables Are 500kb Larger Than You Think!
	Are You There?
	TPageControl Accelerators

